Самоделкин
Главная страница

1. Программирование на Scratch

Введение

Первая программа

Кот и Бизон
Кот и Пес

Мультик с костюмами

Приключения Котенка
Мультик с приведениями

Игра с минами

Мультик про бабочку
Мультик про пчелку
Игра с двумя уровнями
Игра про волшебника
Кот математик
Кот с реактивным ранцем
Общение с персонажем
Викторина
Игра платформер
Кошачий боулинг
 

3. Программирование на S4A

Введение
Маячок
Нарастающая яркость
Управляемая яркость
Бегущий огонек
Секундомер
Ночной светильник
Кнопочный переключатель

 

Программирование на Arduino IDE

Эксперимент. Пироэлектрический инфракрасный (PIR) датчик движения и Arduino

PIR (пассивные инфракрасные датчики) сенсоры позволяют улавливать движение. Очень часто используются в системах сигнализации. Эти датчики малые по габаритам, недорогие, потребляют мало энергии, легки в эксплуатации, практически не подвержены износу. Кроме PIR, подобные датчики называют пироэлектрическими и инфракрасными датчиками движения.

Общая техническая информация

Принцип работы аналогичных датчиков похожий, хотя технические характеристики могут отличаться. Так что прежде чем работать с ПИР-датчиком, ознакомьтесь с его даташитом.

  • Форма: Прямоугольник;
  • Выходной сигнал: цифровой импульс high (3 В) при наличии движения и цифровой сигнал low, когда движения нет. Длина импульса зависит от резисторов и конденсаторов на самом модуле и разная в различных датчиках;
  • Диапазон чувствительности: до 6 метров. Угол обзора 110° x 70°;
  • Питание: 3В - 9В, но наилучший вариант - 5 вольт;
  • BIS0001 (даташит);
  • RE200B (даташит);
  • NL11NH (даташит);
  • Parallax (даташит).

Принцип работы пироэлектрических (PIR) датчиков движения

Пироэлектрический датчик движения состоит из двух основных частей. Каждая из частей включает в себя специальный материал, чувствительный к инфракрасному излучению. В данном случае линзы особо не влияют на работу датчика, так что мы видим два участка чувствительности всего модуля. Когда датчик находится в состоянии покоя, оба сенсора определяют одинаковое количество излучения. Например, это может быть излучение помещения или окружающей среды на улице. Когда теплокровный объект (человек или животное), проходит мимо, он пересекает зону чувствительности первого сенсора, в результате чего  на модуле ПИР датчика генерируются два различных значения излучения. Когда человек покидает зону чувствительности первого сенсора, значения выравниваются. Именно изменения в показаниях двух датчиков регистрируются и генерируют импульсы HIGH или LOW на выходе.

Большинство модулей с инфракрасными датчиками движения имеют три коннектора на задней части. Распиновка может отличаться, так что прежде чем подключать, проверьте ее! Обычно рядом с коннекторами сделаны соответствующие надписи. Один коннектор идет к земле, второй выдает интересующий нас сигнал с сенсоров, третий - земля. Напряжение питания обычно составляет 3-5 вольт, постоянный ток. Однако иногда встречаются датчики с напряжением питания 12 вольт. В некоторых больших датчиках отдельного пина сигнала нет. Вместо этого используется реле с землей, питанием и двумя переключателями.

Для прототипа вашего устройства с использованием инфракрасного датчика движения, удобно использовать монтажную плату, так как большинство данных модулей имеют три коннектора, расстояние между которыми рассчитано именно под отверстия макетки.

В нашем случае красный кабель соответствует питанию, черный - земле, а желтый - сигналу. Если вы подключите кабели неправильно, датчик не выйдет из строя, но работать не будет.

Принципиальная схема

Pir_датчик_без_ARDUINO_Электросхема

Схема на макетке

Pir_датчик_без_ARDUINO         

 

Тестирование PIR датчика движения

Соберите схему в соответсвии с рисунком выше. В результате, когда PIR датчик обнаружит движение, на выходе сгенерируется сигнал HIGH, который соответсвует 3.3 В и светодиод загорится.

При этом учтите, что пироэлектрический датчик должен "стабилизироваться". Установите батарейки и подождите 30-60 секунд. На протяжении этого времени светодиод может мигать. Подождите, пока мигание закончится и можно начинать махать руками и ходить вокруг датчика, наблюдая за тем, как светодиод зажигается!

Настройка перезапуска датчика

У пироэлектрического датчика движения есть несколько настоек. Первой мы рассмотрим "перезапуск".

После подключения, посмотрите на заднюю поверхность модуля. Коннекторы должны быть установлены в левом верхнем углу L.

Обратите внимание, что при таком варианте подключения, светодиод не горит постоянно, а включается-выключается, когда вы двигаетесь возле него. Это опция "без перезапуска" (non-retriggering).

Теперь установите коннектор в позицию H. После тестирования окажется, что светодиод горит постоянно, если кто-то движется в пределах зоны чувствительности датчика. Это режим "перезапуск".

Настраиваем чувствительность

На многих инфракрасных датчиках движения, установлен небольшой потенциометр для настройки чувствительности. Вращение потентенциометра по часовой стрелке добавляет чувствительность датчику.

Изменение времени импульса и времени между импульсами

Когда мы рассматривает PIR датчики, важны два промежутка времени 'задержки'. Первый отрезок времени - Tx: как долго горит светодиод после обнаружения движения. На многих пироэлектрических модулях это время регулируется встроенным потенциометром. Второй отрезок времени - Ti: как долго светодиод гарантированно не загорится, когда движения не было. Изменять этот параметр не так просто, для этого может понадобится паяльник.

Давайте взглянем на даташит BISS:

 На датчиках от Adafruit есть потенциометр, отмеченный как TIME. Это переменный резистор с сопротивлением 1 мегаом, который добавлен к резисторам на 10 килоом. Конденсатор C6 имеет емкость 0.01 микрофарат, так что:

Tx = 24576 x (10 кОм + Rtime) x 0.01 мкФ

Когда потенциометр Rtime в "нулевом" - полностью повернут против часовой стрелки - положении (0 мегаом):

Tx = 24576 x (10 кОм) x 0.01 мкФ = 2.5 секунды (примерно)Когда потенциометр Rtime полностью повернут по часовой стрелке (1мегаом):

Tx = 24576 x (1010 кОм) x 0.01 мкФ = 250 секунд (примерно)

В средней позиции RTime время будет составлять около 120 секунд (две минуты). То есть, если вы хотите отслеживать движение объекта с частотой раз в минуту, поверните потенциометр на 1/4 поворота.

Подключение PIR датчика движения к Arduino

Напишем программу для считывания значений с пироэлектрического датчика движения. Подключить PIR датчик к микроконтроллеру просто. Датчик выдает цифровой сигнал, так что все, что вам необходимо - считывать с пина Arduino сигнал HIGH (обнаружено движение) или LOW (движения нет).

При этом не забудьте установить коннектор в позицию H!

Подайте питание 5 вольт на датчик. Землю соедините с землей. После этого соедините пин сигнала с датчика с цифровым пином на Arduino. В данном примере использован пин 2.

Программа простая. По сути она отслеживает состояние пина 2. А именно: какой на нем сигнал: LOW или HIGH. Кроме того, выводится сообщение, когда состояние пина меняется: есть движение или движения нет.

/*

* проверка PIR датчика движения

*/

int ledPin = 13;  // инициализируем пин для светодиода

int inputPin = 2;  // инициализируем пин для получения сигнала от пироэлектрического датчика движения

int pirState = LOW;  // начинаем работу программы, предполагая, что движения нет

int val = 0;  // переменная для чтения состояния пина

void setup() {

pinMode(ledPin, OUTPUT);  // объявляем светодиод в качестве  OUTPUT

pinMode(inputPin, INPUT);  // объявляем датчик в качестве INPUT

Serial.begin(9600);

}

void loop(){

val = digitalRead(inputPin);  // считываем значение с датчика

if (val == HIGH) {  // проверяем, соответствует ли считанное значение HIGH

digitalWrite(ledPin, HIGH);  // включаем светодиод

if (pirState == LOW) {

// мы только что включили

Serial.println("Motion detected!");

// мы выводим на серийный монитор изменение, а не состояние

pirState = HIGH;

}

} else {

digitalWrite(ledPin, LOW); // выключаем светодиод

if (pirState == HIGH){

// мы только что его выключили

Serial.println("Motion ended!");

// мы выводим на серийный монитор изменение, а не состояние

pirState = LOW;

}

}

}

Не забудьте, что для работы с пироэлектрическим датчиком не всегда нужен микроконтроллер. Порой можно обойтись и простым реле.

 

2. Схемотехника

Введение

Понятие электричества

Принципиальные схемы
Законы электричества
Управление электричеством
Делитель напряжения
Быстрая сборка схем
Конденсатор
Резистор
Диод
Светодиод
Светодиодные сборки
Тактовая кнопка
Биполярный транзистор
Полевой транзистор
Пьезодинамик
Мотор
 

4. Программирование на Arduino IDE

Введение
Маячок
Нарастающая яркость
Управляемая яркость
Бегущий огонек
Секундомер
Ночной светильник
Кнопочный переключатель
Датчик расстояния
Датчик влажности
Датчик движения
Датчик детектор линии
Пьезоизлучатель
Драйвер двигателя